(An Autonomous Institute of Govt. of Maharashtra)

Programme	:	Diploma in ET/CE/EE//ME/MT/CM/IT/DDGM
Programme Code	:	01/02/ 03 /04/05/06/07/08/16/ 17 /21/22/ 23 /24/26
Name of Course	:	Optical Communication
Course Code	:	ET 484

Teaching Scheme:

. =0	Hours /Week	Total Hours
Theory	03	48
Practical	02	32

Evaluation Scheme:

	Progressive	Semester End Examination			
	Assessment	Theory	Practical	Oral	Term work
Duration	Two class tests, each of 60 minutes	3 Hrs.	3 Hrs.	3 Hrs	1 /10
Marks	20	80		25	25

Course Rationale:

This subject is introduced with view that the students are made familiar with optical devices & to gain knowledge of fiber optic Communication Systems.

Course Objectives:

After studying this course, the student will be able to

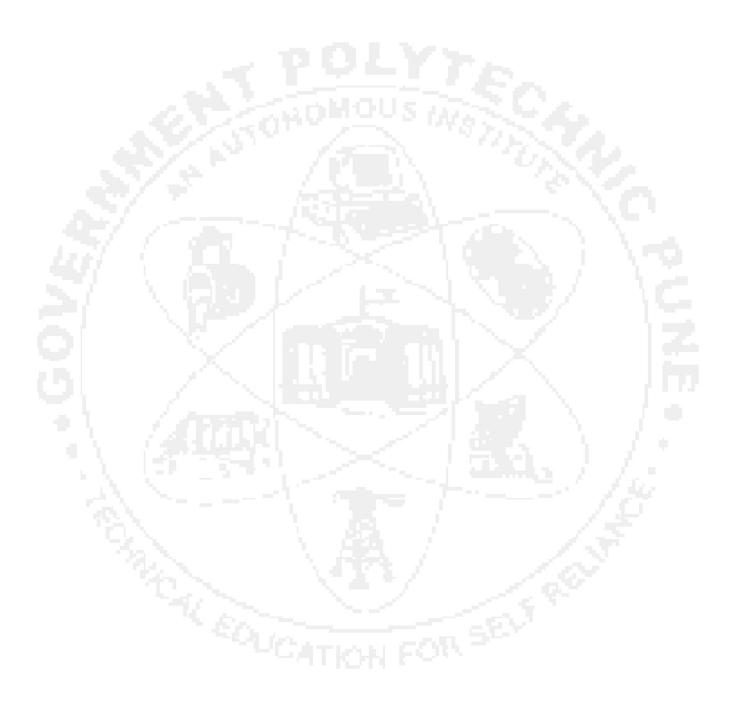
- To Understand fiber optic Technology.
- To Understand working of optical fiber.
- To Understand working of optical sources &detectors
- To Understand working Principle of optical Communications.

(An Autonomous Institute of Govt. of Maharashtra)

Course Content:

Chapter No.	Name of Topic/Sub topic	Hrs	Marks
1.	Fiber Optic Communication		
	1.1 Light Wave Spectrum		
	1.2 History of Fiber Optic.		
	1.3 Advantage & disadvantages of Fiber optic communication.	02	10
	1.4 Application of FOC in Industrial, Defense, Commercial Field.		
	1.5Block Diagram of Fiber Optic Communication.		
2.	Fiber Optic Cables & Ray Theory		
	2.1 Basic Optical Laws & Definition: Reflection, Refractive		
	index, Snell"s law, Numerical aperture, acceptance angle, acceptance		
	cone, critical angle	08	14
	2.2 Construction of Fiber Optic Cable.	00	17
	2.3 Single mode, multimode, step index and graded index fiber.	3,5	
	2.4 Fiber materials	1	
3.	Losses in Optical Fiber		
	3.1 Attenuation and absorption		العنداة
200	3.2 Absorption loss, scattering loss		
	3.3 Bending loss- Micro bending and macro bending		
	3.4 core and cladding losses.	08	14
	3.5 Dispersion-Material, chromatic and waveguide dispersion,		
	Intramodal and Intermodal dispersion		
	3.6 Block diagram & working of OTDR.		<u> </u>
4.	Splices and connectors		
40 4	4.1 Fiber material.		
	4.2 Fiber alignment and joint losses		
	4.3 Splicing techniques	10	14
	4.4 Connectors.	10	
	4.5 Couplers.	11	
5.	Optical Sources & Optical Detector.	/ <u>.</u>	
	5.1 LED:-surface emitting & edge emitting LED –		
	Construction, working principle, characteristics	14.7	
	5.2 Laser:-fabry-perot resonator cavity, Structure &	12	16
	Characteristics of laser diode.	12	10
	5.3 Photo detectors- Principle of photo detectors, types of		
	Photo detectors -PIN, APD & their characteristics.		
6.	Fiber Optics Communication System.		
	6.1 Basic system components.		
	6.2 Power launching and coupling.		
	6.3 Optical analog communication system - basic block diagram.		
	6.4 Optical digital communication systems - basic block diagram.	08	12
	6.5 Repeaters		
	6.6 Time and power budget.		
	6.7 Long haul communication.		

(An Autonomous Institute of Govt. of Maharashtra)


6.8 WDM.		
TOTAL	48	80

List of Practical/Experiments/Assignments:

Sr.	Name of Experiment/Assignment
No.	
1.	Setting of fiber optic analog links
2.	Setting of fiber optic digital links.
3.	Measurement of bending losses
4.	Measurement of propagation losses
5.	Measurement of NA
6.	Measurement of optical power using optical power meter.
7.	To study different types of Fibers
8.	To study different type of components
9.	Verify the characteristics of LED.
10.	Verify the characteristics of Photo Diode.
11.	Attenuation measurement in given FOC.
12.	Visit Industry to see Use of OTDR (Demonstration)
13.	Visit Industry to see Use of Splicing Technique (Demonstration)

Instructional Strategy:

Sr. No.	Topic	Instructional Strategy
1.	Fiber Optic Communication	Class room teaching & Laboratory work
2.	Fiber Optic Cables & Ray Theory	Class room teaching & Laboratory work
3.	Losses in Optical Fiber	Class room teaching & Laboratory work
4.	Splices and connectors	Class room teaching, Laboratory work, Simulation & Presentation on PC
5.	Optical Sources & Optical Detector.	Class room teaching & Laboratory work
6.	Fiber Optics Communication System.	Class room teaching, Simulation & Presentation on PC
	CATK	THE FOR SEA

(An Autonomous Institute of Govt. of Maharashtra)

Text Books:

Sr. No	Author	Title	Publication
1.	Keiser	Optical Fiber Communication	Tata McGraw-Hill International
2.	John Senior	Optical Fiber Communication	Prentice Hall of India
3.	A. Selverajan	Optical Fiber Communication	Tata McGraw-Hill
4.	Kennedy	Principle of communication	Mcgraw Hill

Reference Books:

Sr. No	Author	Title	Publication
1.	Sinior	Optical fiber Communication	PHI
<u>2.</u>	Roddy coolen	Electronics Communication	PHI

<u>Learning Resources:</u> Reference Books, Manuals and Journals of Devices, Components Brochures, Notes, Websites

Specification Table:

Sr.	Topic		Cognitive Levels	~	T
No.	**************************************	Knowledge	Comprehension	Application	Total
1	Fiber Optic Communication	06	02	02	10
2.	Fiber Optic Cables & Ray Theory	08	03	03	10
3.	Losses in Optical Fiber	08	03	. 03	1.4
4	Splices and connectors	07	03	04	14
5.	Optical Sources & Optical Detector.		02	06	14 16
6.	Fiber Optics Communication System.	06	02	04	. 12
	Total	43	15 a	22	80

Prepared By:

(N.S.Bakde)	(S.V.Chaudhari)	(R.N.Shikari.)
Lect. In E &TC	Member Secretary, PBOS	Chairman, PBOS